An Almost-Quadratic Lower Bound for Quantum Formula Size
نویسندگان
چکیده
We show that Nechiporuk’s method [14] for proving lower bound for Boolean formulas can be extended to the quantum case. This leads to an Ω(n2/ log n) lower bound for quantum formulas computing an explicit function. The only known previous explicit lower bound for quantum formulas [15] states that the majority function does not have a linear–size quantum formula.
منابع مشابه
ua nt - p h / 99 03 04 2 v 1 1 1 M ar 1 99 9 An Almost - Quadratic Lower Bound for Quantum Formula Size ∗
We show that Nechiporuk’s method [14] for proving lower bound for Boolean formulas can be extended to the quantum case. This leads to an Ω(n2/ log n) lower bound for quantum formulas computing an explicit function. The only known previous explicit lower bound for quantum formulas [15] states that the majority function does not have a linear–size quantum formula.
متن کاملA Near-Quadratic Lower Bound for the Size of Quantum Circuits of Constant Treewidth
We show that any quantum circuit of treewidth t, built from r-qubit gates, requires at least Ω( n 2 2O(r·t) ·log4 n ) gates to compute the element distinctness function. Our result generalizes a near-quadratic lower bound for quantum formula size obtained by Roychowdhury and Vatan [SIAM J. on Computing, 2001]. The proof of our lower bound follows by an extension of Nečiporuk’s method to the con...
متن کاملQuantum Formulas: A Lower Bound and Simulation
We show that Nechiporuk’s method [26] for proving lower bounds for Boolean formulas can be extended to the quantum case. This leads to an Ω(n/ log n) lower bound for quantum formulas computing an explicit function. The only known previous explicit lower bound for quantum formulas [27] states that the majority function does not have a linear–size quantum formula. We also show that quantum formul...
متن کاملOne-way Communication Complexity and the Ně Ciporuk Lower Bound on Formula Size
The Nečiporuk method for proving lower bounds on the size of Boolean formulae is reformulated in terms of one-way communication complexity. We investigate the scenarios of probabilistic formulae, nondeterministic formulae, and quantum formulae. In all cases we can use results about one-way communication complexity to prove lower bounds on formula size. In the latter two cases we newly develop t...
متن کاملEvery NAND formula on N variables can be evaluated in time O ( N 1 2 + ε )
For every NAND formula on N variables, there is a bounded-error O(N 1 2)-time quantum algorithm that evaluates this formula on a black-box input, for ε > 0 an arbitrarily small constant. It follows that the (2 − ε)-th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره quant-ph/9903042 شماره
صفحات -
تاریخ انتشار 1999